Marketing data is often so big that humans cannot read or analyze a representative sample of it to understand what insights might lie within. In this course, learners use unsupervised deep learning to train algorithms to extract topics and insights from text data. Learners walk through a conceptual overview of unsupervised machine learning and dive into real-world datasets through instructor-led tutorials in Python. The course concludes with a major project.
Unsupervised Text Classification for Marketing Analytics
This course is part of Text Marketing Analytics Specialization
Instructors: Chris J. Vargo
Included with
Recommended experience
What you'll learn
Describe the concept of topic modeling and related terminology (e.g., unsupervised machine learning)
Apply topic modeling to marketing data via a peer-graded project
Apply topic modeling to a variety of popular marketing use cases via homework assignments
Evaluate, tune and improve the performance the topic model you create for your project
Skills you'll gain
Details to know
Add to your LinkedIn profile
2 quizzes
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 5 modules in this course
In this module, we will cover the fundamental concepts of topic modeling, also known as unsupervised machine learning on unstructured text documents. We will contrast unsupervised methods to supervised ones and survey common applications of topic modeling.
What's included
1 video4 readings1 programming assignment1 discussion prompt
In this module, we will go under the hood inside a topic modeling approach and understand what assumptions drive topic model fit. We will also uncover how bag-of-words approaches to topic modeling work, and the natural language processing required to produce meaningful topic modeling features.
What's included
2 videos1 reading1 quiz1 programming assignment
In this module, we will cover how to parse through JSON-like data and segment it to create a corpus that is ready for the topic modeling process. We will cover how the data for your project is structured and its taxonomy.
What's included
2 videos2 readings1 quiz
In this module, we will take Amazon review data and load it into a corpus to preprocess it. We will cover how to build topic models from the data and also save those topic models.
What's included
2 videos2 readings1 peer review
In this module, we will learn how to evaluate the fit of topic models and use the best topic model to classify documents. We will also cover how to build topic models with pre-trained neural networks.
What's included
3 videos3 readings1 peer review
Instructors
Offered by
Recommended if you're interested in Data Analysis
University of Colorado Boulder
University of Illinois Urbana-Champaign
Fundação Instituto de Administração
University of Colorado Boulder
Build toward a degree
This course is part of the following degree program(s) offered by University of Colorado Boulder. If you are admitted and enroll, your completed coursework may count toward your degree learning and your progress can transfer with you.¹
Why people choose Coursera for their career
New to Data Analysis? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.