Give your career the gift of Coursera Plus with $160 off, billed annually. Save today.

University of Pennsylvania

Modeling Risk and Realities

Sergei Savin
Senthil Veeraraghavan

Instructors: Sergei Savin

55,599 already enrolled

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
4.6

(2,198 reviews)

7 hours to complete
3 weeks at 2 hours a week
Flexible schedule
Learn at your own pace
90%
Most learners liked this course
Gain insight into a topic and learn the fundamentals.
4.6

(2,198 reviews)

7 hours to complete
3 weeks at 2 hours a week
Flexible schedule
Learn at your own pace
90%
Most learners liked this course

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

4 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Business and Financial Modeling Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

This module is designed to teach you how to analyze settings with low levels of uncertainty, and how to identify the best decisions in these settings. You'll explore the optimization toolkit, learn how to build an algebraic model using an advertising example, convert the algebraic model to a spreadsheet model, work with Solver to discover the best possible decision, and examine an example that introduces a simple representation of risk to the model. By the end of this module, you'll be able to build an optimization model, use Solver to uncover the optimal decision based on your data, and begin to adjust your model to account for simple elements of risk. These skills will give you the power to deal with large models as long as the actual uncertainty in the input values is not too high.

What's included

4 videos2 readings1 assignment

What if uncertainty is the key feature of the setting you are trying to model? In this module, you'll learn how to create models for situations with a large number of variables. You'll examine high uncertainty settings, probability distributions, and risk, common scenarios for multiple random variables, how to incorporate risk reduction, how to calculate and interpret correlation values, and how to use scenarios for optimization, including sensitivity analysis and the efficient frontier. By the end of this module, you'll be able to identify and use common models of future uncertainty to build scenarios that help you optimize your business decisions when you have multiple variables and a higher degree of risk.

What's included

3 videos2 readings1 assignment

When making business decisions, we often look to the past to make predictions for the future. In this module, you'll examine commonly used distributions of random variables to model the future and make predictions. You'll learn how to create meaningful data visualizations in Excel, how to choose the the right distribution for your data, explore the differences between discrete distributions and continuous distributions, and test your choice of model and your hypothesis for goodness of fit. By the end of this module, you'll be able to represent your data using graphs, choose the best distribution model for your data, and test your model and your hypothesis to see if they are the best fit for your data.

What's included

4 videos2 readings1 assignment

This module is designed to help you use simulations to enabling compare different alternatives when continuous distributions are used to describe uncertainty. Through an in-depth examination of the simulation toolkit, you'll learn how to make decisions in high uncertainty settings where random inputs are described by continuous probability distributions. You'll also learn how to run a simulation model, analyze simulation output, and compare alternative decisions to decide on the most optimal solution. By the end of this module, you'll be able to make decisions and manage risk using simulation, and more broadly, to make successful business decisions in an increasing complex and rapidly evolving business world.

What's included

4 videos2 readings1 assignment

Instructors

Instructor ratings
4.5 (113 ratings)
Sergei Savin
University of Pennsylvania
2 Courses167,251 learners

Offered by

Recommended if you're interested in Business Essentials

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

Showing 3 of 2198

4.6

2,198 reviews

  • 5 stars

    70.77%

  • 4 stars

    21.59%

  • 3 stars

    5.86%

  • 2 stars

    1.13%

  • 1 star

    0.63%

SV
5

Reviewed on Apr 4, 2020

GA
5

Reviewed on Dec 25, 2017

YY
5

Reviewed on Sep 22, 2020

New to Business Essentials? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions