Deep Learning vs. Machine Learning: A Beginner’s Guide
January 28, 2025
Article · 5 min read
Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now
Instructors: Mark J Grover
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
16,822 already enrolled
Included with
(133 reviews)
(133 reviews)
Add to your LinkedIn profile
12 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course introduces you to additional topics in Machine Learning that complement essential tasks, including forecasting and analyzing censored data. You will learn how to find analyze data with a time component and censored data that needs outcome inference. You will learn a few techniques for Time Series Analysis and Survival Analysis. The hands-on section of this course focuses on using best practices and verifying assumptions derived from Statistical Learning.
By the end of this course you should be able to: Identify common modeling challenges with time series data Explain how to decompose Time Series data: trend, seasonality, and residuals Explain how autoregressive, moving average, and ARIMA models work Understand how to select and implement various Time Series models Describe hazard and survival modeling approaches Identify types of problems suitable for survival analysis Who should take this course? This course targets aspiring data scientists interested in acquiring hands-on experience with Time Series Analysis and Survival Analysis. What skills should you have? To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Data Cleaning, Exploratory Data Analysis, Calculus, Linear Algebra, Supervised Machine Learning, Unsupervised Machine Learning, Probability, and Statistics.
This module introduces the concept of forecasting and why Time Series Analysis is best suited for forecasting, compared to other regression models you might already know. You will learn the main components of a Time Series and how to use decomposition models to make accurate time series models.
10 videos3 readings3 assignments
This module introduces you to the concepts of stationarity and Time Series smoothing. Having a Time Series that is stationary is easy to model. You will learn how to identify and solve non-stationarity. Smoothing is relevant to you as it will help improve the accuracy of your models.
13 videos3 readings3 assignments
This module introduces moving average models, which are the main pillar of Time Series analysis. You will first learn the theory behind Autoregressive Models and gain some practice coding ARMA models. Then you will extend your knowledge to use SARMA and SARIMA models as well.
9 videos3 readings3 assignments
This module introduces two additional tools for forecasting: Deep Learning and Survival Analysis. In addition to AI and Machine Learning applications, Deep Learning is also used for forecasting. Survival Analysis is a branch of Statistics first ideated to analyze hazard functions and the expected time for an event such as mechanical failure or death to happen. Survival Analysis is still used widely in the pharmaceutical industry and also in other business scenarios with limited data related to censoring, the lack of information on whether an event occurred or not for a certain observation.
8 videos3 readings3 assignments1 peer review
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
At IBM, we know how rapidly tech evolves and recognize the crucial need for businesses and professionals to build job-ready, hands-on skills quickly. As a market-leading tech innovator, we’re committed to helping you thrive in this dynamic landscape. Through IBM Skills Network, our expertly designed training programs in AI, software development, cybersecurity, data science, business management, and more, provide the essential skills you need to secure your first job, advance your career, or drive business success. Whether you’re upskilling yourself or your team, our courses, Specializations, and Professional Certificates build the technical expertise that ensures you, and your organization, excel in a competitive world.
Edureka
Course
Imperial College London
Course
Course
The State University of New York
Course
133 reviews
70.67%
18.04%
6.01%
3%
2.25%
Showing 3 of 133
Reviewed on Nov 23, 2021
This is an excellent course covering large areas of Time Series analysis and is a must for any one intending to learn the topics with some detail.
Reviewed on Feb 25, 2021
Not much details but good as an overview on the topic
Reviewed on Sep 23, 2021
this is one the great course i learned. both theoritical and practical went parrallely that made the course much more reliable.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Financial aid available,
New to Coursera?
Having trouble logging in? Learner help center
This site is protected by reCAPTCHA Enterprise and the Google Privacy Policy and Terms of Service apply.