Chevron Left
Back to Introduction to Recommender Systems: Non-Personalized and Content-Based

Learner Reviews & Feedback for Introduction to Recommender Systems: Non-Personalized and Content-Based by University of Minnesota

4.5
stars
618 ratings

About the Course

This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail, and leads you through non-personalized recommendation using summary statistics and product associations, basic stereotype-based or demographic recommendations, and content-based filtering recommendations. After completing this course, you will be able to compute a variety of recommendations from datasets using basic spreadsheet tools, and if you complete the honors track you will also have programmed these recommendations using the open source LensKit recommender toolkit. In addition to detailed lectures and interactive exercises, this course features interviews with several leaders in research and practice on advanced topics and current directions in recommender systems....

Top reviews

BS

Feb 12, 2019

One of the best courses I have taken on Coursera. Choosing Java for the lab exercises makes them inaccessible for many data scientists. Consider providing a Python version.

DP

Dec 7, 2017

Nice introduction to recommender systems for those who have never heard about it before. No complex mathematical formula (which can also be seen by some as a downside).

Filter by:

126 - 129 of 129 Reviews for Introduction to Recommender Systems: Non-Personalized and Content-Based

By Kevin J A D

Jan 28, 2022

By Priyamvada S

Dec 6, 2021

By ­박민혜 / 학 / 데

Feb 26, 2020

By Roman O

Nov 5, 2021