Northeastern University
Machine Learning and Data Analytics Part 2
Northeastern University

Machine Learning and Data Analytics Part 2

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level
Some related experience required
2 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level
Some related experience required
2 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

There are 7 modules in this course

In this module, we'll learn two powerful techniques for refining predictive models: Ridge regression and Lasso regression. These methods address the challenge of overfitting in linear regression by introducing regularization techniques. Ridge regression employs L2 regularization to control the magnitude of coefficients, while Lasso regression utilizes L1 regularization to perform feature selection. Throughout this module, we'll explore the principles behind Ridge and Lasso regression, examine their mathematical foundations, understand how they tackle overfitting, learn how to implement them in practical scenarios, and discuss the intricacies of these essential regression techniques.

What's included

3 videos9 readings1 assignment

In this module, we'll dive into the core principles and algorithms of clustering in data mining. You'll learn about key techniques such as K-Means, hierarchical clustering, and DBSCAN. Through hands-on activities and real-world datasets, you'll learn to identify patterns and groupings effectively. With K-Means clustering, we’ll explore how to partition data into distinct groups based on similarity. Hierarchical clustering will help us dive into creating dendrograms to visualize relationships between data points. Finally, DBSCAN will introduce you to density-based clustering, ideal for detecting outliers and noise in your data. Get ready to unlock the power of clustering algorithms!

What's included

3 videos7 readings1 assignment

In this module, we discuss the fundamental concepts and algorithms of association rule mining, including Apriori and FP-Growth. Through the Association Rule Mining lesson, you'll grasp the essence of discovering meaningful patterns and relationships in large datasets. The FP-Growth (Frequent Pattern Growth) Algorithm lesson will equip you with the skills to create and implement efficient algorithms for identifying frequent itemsets and strong association rules. Additionally, you'll learn how collaborative filtering, a technique widely used in recommendation systems, leverages association rule mining to provide personalized recommendations. By the end of the module, you'll be adept at evaluating the effectiveness of association rules using key metrics such as support, confidence, and lift.

What's included

3 videos6 readings1 assignment

In this module, you'll master the application of support vector machines (SVMs) for classification tasks, learning to leverage this powerful discriminative algorithm effectively. We'll explore the significance of support vectors in defining the margin that separates different classes, enhancing the model's generalization capabilities. You'll gain insights into the differences between a hard margin SVM and soft margin SVM, with a focus on handling real-world, noisy data. Additionally, we'll delve into the mathematical formulation of the soft margin SVM, emphasizing the objective function and its critical role in balancing margin width and classification accuracy.

What's included

3 videos5 readings1 assignment

This module is designed to provide you with a comprehensive understanding of neural network architectures and their functionality. You will explore the intricacies of feedforward networks, the mechanics of backpropagation, and foundational concepts in deep learning. Through practical examples and hands-on exercises, you'll learn how to build and train neural networks to solve complex problems. By the end of this module, you will have a solid grasp of how neural networks operate and be prepared to apply deep learning techniques in various real-world scenarios.

What's included

3 videos3 readings1 assignment

Welcome to the Text Mining Module! This module will equip you with essential skills and knowledge in text mining, covering key concepts, techniques, and the related challenges you may encounter. You will learn about text preprocessing, tokenization, and feature extraction, all crucial for transforming raw text into valuable data. We will delve into applying various text mining algorithms for practical applications, such as information retrieval, sentiment analysis, and topic modeling. By the end of this module, you will be adept at leveraging text mining tools to uncover insights and patterns from textual data, enhancing your data analysis capabilities.

What's included

2 videos3 readings1 assignment

In this module, you will explore the realm of time series analysis, mastering fundamental concepts and techniques essential for understanding and analyzing temporal data patterns. You will gain an understanding of the triad of trend, seasonality, and noise, deciphering their influence on time series behavior. Through hands-on exercises, you will learn to discern patterns, identify trends, and isolate seasonal fluctuations within time series data. Building upon this foundation, you will then embark on a journey through advanced time series modeling techniques. You will wield powerful tools such as ARIMA, exponential smoothing, and LSTM networks to forecast future trends and detect anomalies within temporal data streams. By the module's conclusion, you will emerge equipped with the skills and knowledge necessary to harness the predictive power of time series analysis in diverse domains.

What's included

2 videos3 readings1 assignment

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.

Instructor

Chinthaka Pathum Dinesh  Herath Gedara
Northeastern University
2 Courses1 learner

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."
Coursera Plus

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions