Chevron Left
Back to Generative AI with Large Language Models

Learner Reviews & Feedback for Generative AI with Large Language Models by DeepLearning.AI

4.8
stars
2,942 ratings

About the Course

In Generative AI with Large Language Models (LLMs), you’ll learn the fundamentals of how generative AI works, and how to deploy it in real-world applications. By taking this course, you'll learn to: - Deeply understand generative AI, describing the key steps in a typical LLM-based generative AI lifecycle, from data gathering and model selection, to performance evaluation and deployment - Describe in detail the transformer architecture that powers LLMs, how they’re trained, and how fine-tuning enables LLMs to be adapted to a variety of specific use cases - Use empirical scaling laws to optimize the model's objective function across dataset size, compute budget, and inference requirements - Apply state-of-the art training, tuning, inference, tools, and deployment methods to maximize the performance of models within the specific constraints of your project - Discuss the challenges and opportunities that generative AI creates for businesses after hearing stories from industry researchers and practitioners Developers who have a good foundational understanding of how LLMs work, as well the best practices behind training and deploying them, will be able to make good decisions for their companies and more quickly build working prototypes. This course will support learners in building practical intuition about how to best utilize this exciting new technology. This is an intermediate course, so you should have some experience coding in Python to get the most out of it. You should also be familiar with the basics of machine learning, such as supervised and unsupervised learning, loss functions, and splitting data into training, validation, and test sets. If you have taken the Machine Learning Specialization or Deep Learning Specialization from DeepLearning.AI, you’ll be ready to take this course and dive deeper into the fundamentals of generative AI....

Top reviews

OK

Jan 28, 2024

Easily a five star course. You will get a combination of overview of advanced topics and in depth explanation of all necessary concepts. One of the best in this domain. Good work. Thank you teachers!

C

Jul 10, 2023

A very good course covering many different areas, from use cases, to the mathematical underpinnings and the societal impacts. And having the labs to actually get to play around with the algorithms.

Filter by:

601 - 625 of 741 Reviews for Generative AI with Large Language Models

By Rohith K

•

Dec 31, 2023

Good overview of the different stages of developing an LLM application. I felt it gave me enough knowledge to be able to understand the current research and applications that are being developed for large-language models. The course gives you links to relevant papers that you can read for more in-depth coverage on how some of the latest LLMs are constructed and trained. I would have liked the labs to be more hands on. You basically run pre-built lab notebooks that use existing model implementations from widely available libraries like HuggingFace. There was no requirement to write any code.

By Mike R

•

Aug 14, 2023

This is a good introduction - the lectures are very good and cover many critical aspects of training LLMs such as PEFT, RLHF and challenges with scaling and deployment. The lab notebooks go through the lecture ideas though you just need to run the notebook - there is no exercises in the labs for you to do which is why I have given 4 stars as usually the labs are where the learning happens.

I hope that this turns into a specialisation with exercises as the teaching team really know their stuff and there are literally almost no other alternatives to get curated learning in LLMs right now.

By Eliu M M

•

Mar 1, 2024

A course with a lot of new information, very well explained even for people with no prior knowledge of the subject. It's not an introductory course on the theory; there's a lot of technical explanation of the LLM core. In the end, I can say that I understand much better what LLMs are, how they are structured, their architecture, how they are trained, and aligned to strive for improved capabilities. The labs are very supportive, providing enough guidance to understand the direction of the programming and what needs to be done, but undoubtedly, I couldn't program anything related to it.

By Dan S

•

Jun 4, 2024

Great course, in-depth and well paced. Presentation and user interface are excellent, flow is good, and ability to re-play and navigate the videos is excellent, as is the ability to download and keep for later review. My one complaint, and the reason for -1 star are the glaring issues in the transcript text. It is clear that it was auto-generated and _never_ vetted for accuracy. I expected more effort put into this as having a text-searchable take-away is valuable.

By Daniel W

•

Aug 19, 2023

An excellent introduction to important, contemporary concepts in LLMs. A lot of detail is packed into each week, supplemented by hands-on exercises to provide learners with a feel for the topics covered. I felt that the hands-on element could have been better by providing opportunities to solve problems ourselves. Otherwise, this course has been a great use of time and I have come away with a sense of better understanding and accomplishment.

By Amit I

•

Jun 15, 2024

Very good overview of LLM topics like prompt engineering and fine tuning. Instructors are good and the labs are well thought out. The labs show how the concepts learned in lectures are implemented, but it would have been nice to go on a deeper dive on the API. The module on fine-tuning was very good with a lot of good references. If you are looking for a course to get under the hood of LLM/GenAI, I would recommend.

By Robert S

•

Dec 3, 2023

Enjoyed the videos and this course suited me well, without any complex maths but at the same time I felt I have learned a great deal about how LLMs work, are trained and how their performance can be enhanced for the task that it's applied to. I would have liked a chance to develop a use-case scenario that could lead to peer-based assessment. In my case, this is around generating content for language learning.

By Jason O

•

Jan 28, 2024

There is lots of good information in this course. The one thing that would prevent it from getting 5 stars in my opinion is the lack of reasoning exercises in the lab (e.g. generate code for a function that does 'x' and returns 'y' in the context of generative process). Even if the function requirements were relatively simple, it would help retention of the concepts.

By Soumya B

•

Apr 21, 2024

The breadth of the topics covered is excellent. The assignments are not engaging at all, and hope it can be improved in the future iterations (maybe include advanced non-graded parts in the notebooks). More curated learning materials (link to blogs, articles not behind paywall - e.g. Lilian Wang's blog) can be an interesting addition.

By Parth P

•

Sep 2, 2024

This is a great course covering every aspect of GenAI will LLMs. I feel that it can be even better with better explanations of the lab code modules with better and detailed comments. I found it difficult to understand what certain part of the code does and how would certain parameter values impact in different function calls.

By Julien G

•

Jan 14, 2024

A good introduction to the Generative AI lifecycle. Accessible even if your ML background is limited. I appreciated the labs that allowed me to see code in action. As a Python developer, I only wish that the labs would be more interactive, calling for more modifications to better understand the libraries that were in use.

By Ben R

•

Mar 8, 2024

Good content and pacing giving enough time to understand but moving quickly. Labs are ungraded, and so a little meaningless, as all you have to do is submit them with no changes. Make the labs harder, requiring actual coding, and this would be a great course. Currently not really worth paying for.

By malhar j

•

Jul 30, 2024

Excellent course. Very good technical intro for someone new to LLMs. Only issue was I felt the final week on RLHF was not explained in enough detail. Perhaps it was too complex. Even the lab for RLHF had a lot of bits that could have been explained more (eg: What is a value head in PPO).

By Lisa M

•

Jun 5, 2024

Everything was terrific, except that with the Labs, I needed clarification about whether I should alter the coding according to the prepended directions. I reread and rewatched the instructions, but I am still confused about whether I did the Labs correctly. Otherwise, thank you very much.

By Hawlader A A

•

Oct 21, 2023

A top-notch course offered by DLAI and AWS, where I gained valuable insights into LLM. However, the labs did present challenges with frequent kernel crashes, likely due to the 4GB memory allocation. Aside from that hiccup, I found the course utterly captivating.

By Yicheng Z

•

Aug 3, 2023

The course gives a gentle and comprehensive introduction to LLMs. It is suited for beginners in LLM but with some previous experiences with Python programming and Machine Learning.

It would be better if the course provides more practical coding exercises.

By Ayushi P

•

Aug 5, 2024

Very good technical videos, provide a good source of knowledge. Quizzes are a good test for the knowledge obtained too. Practical labs can be a bit more engaging, so that a person feels more confident and independent in doing their own projects.

By Norbert v W

•

Mar 15, 2024

The course covers a wide variety of topics around Gen AI and LLMs, which was interesting and helpful. There was very little hands-on work in the labs, which was disappointing, it effectively was no more than running someone else's code.

By Lakshmi G B

•

Aug 27, 2023

Some of the places were too technical and the delivery sometimes felt like it is being read from a textbook. I had to go back again and listen to it or read the transcript to grasp what was being conveyed. Shorter sentences may help.

By Ayrton C J

•

Sep 9, 2023

Really good class. I wish we were able to provide a real live use case, and the class/instructors would help us how to solve the problem with the tools provided in the class. But overall. I definitely recommend the class. Thank you.

By Simon S

•

Apr 26, 2024

Compared to the original machine learning course, it's a bit too little hands on. The labs are crafted nicely, but can just be executed. Learning effect is higher, if actual tasks have to be done by the student him/herself.

By Claudio C

•

Mar 25, 2024

The content is amazing but presented at a high level and super fast. I wish they could focus more on practice. Labs are OK, but all Notebooks are ready to execute. It would be better to have something that we code along.

By Aziz B

•

Jul 1, 2024

Lab exercises could be improved with an additional section to write production code for Gen AI applications. Overall, the content coverage was enriching and course instructors were concise in the delivery of the topic.

By Joris C

•

Aug 24, 2023

Very good course, with a few caveats: subtitles/transcripts are sometimes a mess & I find some pieces to be lacking; for example an overview of current SOTA models and the use of an initial/system prompt for chat bots.

By mikael h

•

Aug 1, 2023

excellent topics, well explained and good lab exercises. Gave a good introduction to LLMs structure and applications. Would have been even better with a lab in the last week looking at agent patterns and applications