Linux Skills for 2025 (+ How to Add Them to Your Resume)
February 19, 2025
Article
This course is part of multiple programs.
Instructors: Joseph Santarcangelo
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
6,628 already enrolled
Included with
(78 reviews)
Recommended experience
Intermediate level
Basic knowledge of Python and a familiarity with machine learning and neural network concepts.
(78 reviews)
Recommended experience
Intermediate level
Basic knowledge of Python and a familiarity with machine learning and neural network concepts.
Explain how to use one-hot encoding, bag-of-words, embedding, and embedding bags to convert words to features.
Build and use word2vec models for contextual embedding.
Build and train a simple language model with a neural network.
Utilize N-gram and sequence-to-sequence models for document classification, text analysis, and sequence transformation.
Add to your LinkedIn profile
5 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This IBM course will teach you how to implement, train, and evaluate generative AI models for natural language processing (NLP). The course will help you acquire knowledge of NLP applications including document classification, language modeling, language translation, and fundamentals for building small and large language models.
You will learn about converting words to features. You will understand one-hot encoding, bag-of-words, embedding, and embedding bags. You also will learn how Word2Vec embedding models are used for feature representation in text data. You will implement these capabilities using PyTorch. The course will teach you how to build, train, and optimize neural networks for document categorization. In addition, you will learn about the N-gram language model and sequence-to-sequence models. This course will help you evaluate the quality of generated text using metrics, such as BLEU. You will practice what you learn using Hands-on Labs and perform tasks such as implementing document classification using torchtext in PyTorch. You will gain the skills to build and train a simple language model with a neural network to generate text and integrate pre-trained embedding models, such as word2vec, for text analysis and classification. In addition, you will apply your new skills to develop sequence-to-sequence models in PyTorch and perform tasks such as language translation.
In this module, you will learn about one-hot encoding, bag-of-words, embeddings, and embedding bags. You will also gain knowledge of neural networks and their hyperparameters, cross-entropy loss, and optimization. You will then delve into the concept of language modeling with n-grams. The module also includes hands-on labs on document classification with PyTorch and building a simple language model with a neural network.
7 videos4 readings3 assignments2 app items1 plugin
In this module, you will learn about the word2vec embedding model and its types. You will also be introduced to sequence-to-sequence models and how they employ Recurrent neural networks (RNNs) to process variable-length input sequences and generate variable-length output sequences. You will gain insights about encoder-decoder RNN models, their architecture, and how to build them using PyTorch. The module will give you knowledge about evaluating the quality of text using perplexity, precision, and recall in text generation. In hands-on labs, you will integrate pre-trained embedding models for text analysis or classification and develop a sequence-to-sequence model for sequence transformation tasks.
6 videos5 readings2 assignments2 app items3 plugins
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
At IBM, we know how rapidly tech evolves and recognize the crucial need for businesses and professionals to build job-ready, hands-on skills quickly. As a market-leading tech innovator, we’re committed to helping you thrive in this dynamic landscape. Through IBM Skills Network, our expertly designed training programs in AI, software development, cybersecurity, data science, business management, and more, provide the essential skills you need to secure your first job, advance your career, or drive business success. Whether you’re upskilling yourself or your team, our courses, Specializations, and Professional Certificates build the technical expertise that ensures you, and your organization, excel in a competitive world.
DeepLearning.AI
Course
Edureka
Course
78 reviews
71.26%
17.24%
2.29%
0%
9.19%
Showing 3 of 78
Reviewed on Nov 2, 2024
Very clear introduction of the NLP with hands-on exercises
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
It will take only two weeks to complete this course if you spend four hours of study time per week.
It will be good if you have a basic knowledge of Python and a familiarity with machine learning and neural network concepts.
PS: Data set preprocessing/cleaning is not covered in this course.
This course is part of a specialization. When you complete the specialization, you will prepare yourself with the skills and confidence to take on jobs such as AI Engineer, NLP Engineer, Machine Learning Engineer, Deep Learning Engineer, and Data Scientist.
Only a modern web browser is required to complete this course and all hands-on labs.
You will be provided access to cloud-based environments to complete the labs at no charge.
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.