Whizlabs
NVIDIA: Fundamentals of Machine Learning
Whizlabs

NVIDIA: Fundamentals of Machine Learning

Whizlabs Instructor

Instructor: Whizlabs Instructor

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

5 hours to complete
3 weeks at 1 hour a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

5 hours to complete
3 weeks at 1 hour a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Understand the fundamentals of AI, ML, and Deep Learning, and their key differences.

  • Implement supervised learning techniques like classification and regression.

  • Apply clustering methods and time series analysis using ARIMA.

  • Leverage NVIDIA RAPIDS for GPU-accelerated ML workflows.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

February 2025

Assessments

6 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 3 modules in this course

Welcome to Week 1 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore ML Basics and Data Preprocessing, starting with an introduction to the course and best practices for exam success. We will define machine learning and set expectations for the Fundamentals of Machine Learning course. As we progress, we will differentiate between AI, Deep Learning, and Machine Learning and examine the types of machine learning. We will also cover the key steps involved in the machine-learning process. By the end of the week, we will dive into data preprocessing essentials, understanding its significance in machine learning workflows. A demo session on data preprocessing will provide hands-on insights into preparing data for model training.

What's included

9 videos2 readings2 assignments1 discussion prompt

Welcome to Week 2 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore the fundamentals of Supervised Machine Learning and Modal Evaluation, covering both Classification and Regression techniques. We will begin by understanding the principles of classification and regression models and their applications. As we progress, we will explore the process of model selection, training, and evaluation, followed by an in-depth discussion on evaluating classification models using the Confusion Matrix. Additionally, we will examine key evaluation metrics for both classification and regression models through theoretical explanations and hands-on demonstrations.

What's included

8 videos1 reading2 assignments

Welcome to Week 3 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will cover Unsupervised Learning, Advanced Techniques & GPU Acceleration, starting with unsupervised learning techniques like KMeans, hierarchical, and density-based clustering, along with a hands-on demo. We'll also explore association rule mining and NVIDIA RAPIDS for GPU-accelerated workflows, including a demo. Additionally, we'll learn about cross-validation techniques (GridSearch and Randomized Search) with a practical demo and conclude with the ARIMA model for time series analysis, along with a hands-on demo.

What's included

11 videos3 readings2 assignments

Instructor

Whizlabs Instructor
Whizlabs
69 Courses53,603 learners

Offered by

Whizlabs

Recommended if you're interested in Cloud Computing

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

New to Cloud Computing? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions