The NVIDIA: Fundamentals of Deep Learning Course is the second course in the Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Associate specialization. It introduces learners to core deep learning concepts and techniques, building on foundational machine learning principles.



NVIDIA: Fundamentals of Deep Learning
This course is part of Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Specialization

Instructor: Whizlabs Instructor
Included with
Recommended experience
What you'll learn
Understand deep learning fundamentals, including neuron data processing and model training.
Implement multi-class classification and CNNs for image recognition tasks.
Apply transfer learning with pre-trained models to improve deep learning performance.
Details to know

Add to your LinkedIn profile
February 2025
4 assignments
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate


Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review

There are 2 modules in this course
Welcome to Week 1 of the NVIDIA: Fundamentals of Deep Learning course. This week, we will cover the basics of Deep Learning. We will explore how data is processed in a neuron and learn about Gradient Descent. Next, we will demonstrate Training a Perceptron and dive into Forward Propagation and Backward Propagation in deep learning networks. Finally, we will look at Activation Functions with a practical demo. By the end of the week, you will have a strong understanding of these core concepts.
What's included
9 videos2 readings2 assignments1 discussion prompt
Welcome to Week 2 of NVIDIA: Fundamentals of Deep Learning course. This week, we will dive into Advanced Deep Learning Techniques, where we will learn about Multi-Class Classification using the MNIST Dataset and explore how deep learning models can be applied for classification tasks. We will cover training a multiclass classifier and methods to fit and evaluate the model's performance. Next, we will gain a deep understanding of Convolutional Neural Networks (CNNs), which are essential for image recognition tasks. We will also explore Transfer Learning Techniques, which allow us to leverage pre-trained models for new tasks. By the end of the week, we will implement Transfer Learning on an Image Dataset through a practical demo, reinforcing your understanding of these advanced techniques.
What's included
5 videos3 readings2 assignments
Instructor

Offered by
Recommended if you're interested in Software Development
Why people choose Coursera for their career




New to Software Development? Start here.

Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.