- Managing Machine Learning Production Systems
- Deployment Pipelines
- Model Pipelines
- Data Pipelines
- Machine Learning Engineering for Production
- Human-level Performance (HLP)
- Concept Drift
- Model baseline
- Project Scoping and Design
- ML Deployment Challenges
- ML Metadata
- Convolutional Neural Network
Machine Learning Engineering for Production (MLOps) Specialization
Become a Machine Learning expert. Productionize your machine learning knowledge and expand your production engineering capabilities.
Offered By

What you will learn
Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements.
Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application.
Build data pipelines by gathering, cleaning, and validating datasets. Establish data lifecycle by using data lineage and provenance metadata tools.
Apply best practices and progressive delivery techniques to maintain and monitor a continuously operating production system.
Skills you will gain
About this Specialization
Applied Learning Project
By the end, you'll be ready to
• Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements
• Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application
• Build data pipelines by gathering, cleaning, and validating datasets
• Implement feature engineering, transformation, and selection with TensorFlow Extended
• Establish data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas
• Apply techniques to manage modeling resources and best serve offline/online inference requests
• Use analytics to address model fairness, explainability issues, and mitigate bottlenecks
• Deliver deployment pipelines for model serving that require different infrastructures
• Apply best practices and progressive delivery techniques to maintain a continuously operating production system
• Some knowledge of AI / deep learning • Intermediate skills in Python • Experience with any deep learning framework (PyTorch, Keras, or TensorFlow)
• Some knowledge of AI / deep learning • Intermediate skills in Python • Experience with any deep learning framework (PyTorch, Keras, or TensorFlow)
How the Specialization Works
Take Courses
A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.
Hands-on Project
Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.
Earn a Certificate
When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

There are 4 Courses in this Specialization
Introduction to Machine Learning in Production
In the first course of Machine Learning Engineering for Production Specialization, you will identify the various components and design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment constraints and requirements; and learn how to establish a model baseline, address concept drift, and prototype the process for developing, deploying, and continuously improving a productionized ML application.
Machine Learning Data Lifecycle in Production
In the second course of Machine Learning Engineering for Production Specialization, you will build data pipelines by gathering, cleaning, and validating datasets and assessing data quality; implement feature engineering, transformation, and selection with TensorFlow Extended and get the most predictive power out of your data; and establish the data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas.
Machine Learning Modeling Pipelines in Production
In the third course of Machine Learning Engineering for Production Specialization, you will build models for different serving environments; implement tools and techniques to effectively manage your modeling resources and best serve offline and online inference requests; and use analytics tools and performance metrics to address model fairness, explainability issues, and mitigate bottlenecks.
Deploying Machine Learning Models in Production
In the fourth course of Machine Learning Engineering for Production Specialization, you will learn how to deploy ML models and make them available to end-users. You will build scalable and reliable hardware infrastructure to deliver inference requests both in real-time and batch depending on the use case. You will also implement workflow automation and progressive delivery that complies with current MLOps practices to keep your production system running. Additionally, you will continuously monitor your system to detect model decay, remediate performance drops, and avoid system failures so it can continuously operate at all times.
Offered by

DeepLearning.AI
DeepLearning.AI is an education technology company that develops a global community of AI talent.
Frequently Asked Questions
What is the refund policy?
Can I just enroll in a single course?
Is financial aid available?
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
What is machine learning engineering for production? Why is it relevant?
What is the Machine Learning Engineering for Production (MLOps) Specialization about?
What will I be able to do after completing the Machine Learning Engineering in Production (MLOps) Specialization?
What background knowledge is necessary for the Machine Learning Engineering for Production (MLOps) Specialization?
Who is the Machine Learning Engineering for Production (MLOps) Specialization for?
How long does it take to complete the Machine Learning Engineering for Production (MLOps) Specialization?
Who is the Machine Learning Engineering for Production (MLOps) Specialization by?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
Can I apply for financial aid?
Can I audit the Machine Learning Engineering for Production (MLOps) Specialization?
How do I get a receipt to get this reimbursed by my employer?
I want to purchase this Specialization for my employees. How can I do that?
Will I earn university credit for completing the Specialization?
More questions? Visit the Learner Help Center.