Object Localization is the task of locating an instance of a particular object category in an image, typically by specifying a tightly cropped bounding box centered on the instance. In this 2-hour project-based course, you will be able to understand the Object Localization Dataset and you will write a custom dataset class for Image-bounding box dataset. Additionally, you will apply augmentation for localization task to augment images as well as its effect on bounding box. For localization task augmentation you will use albumentation library. We will plot the (image-bounding box) pair. Thereafter, we will load a pretrained state of the art convolutional neural network using timm library.Moreover, we are going to create train function and evaluator function which will be helpful to write training loop. Lastly, you will use best trained model to find bounding box given any image.
New year. Big goals. Bigger savings. Unlock a year of unlimited access to learning with Coursera Plus for $199. Save now.
Deep Learning with PyTorch : Object Localization
Instructor: Parth Dhameliya
5,770 already enrolled
Included with
(40 reviews)
Recommended experience
What you'll learn
Create custom dataset for Localization problems
Apply augmentations for localization task and load pretrained model
Create train function and evaluator for training loop
Skills you'll practice
Details to know
Add to your LinkedIn profile
Only available on desktop
See how employees at top companies are mastering in-demand skills
Learn, practice, and apply job-ready skills in less than 2 hours
- Receive training from industry experts
- Gain hands-on experience solving real-world job tasks
- Build confidence using the latest tools and technologies
About this Guided Project
Learn step-by-step
In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:
Set up colab run environment
Configurations
Understand the dataset
Augmentations
Create Custom Dataset
Load dataset into batches
Create Model
Create Train and Eval Functions
Training Loop
Inference
Recommended experience
Prior programming experience in Python and basic pytorch. Theoretical knowledge of Convolutional Neural Network and Training process (Optimization)
10 project images
Instructor
Offered by
How you'll learn
Skill-based, hands-on learning
Practice new skills by completing job-related tasks.
Expert guidance
Follow along with pre-recorded videos from experts using a unique side-by-side interface.
No downloads or installation required
Access the tools and resources you need in a pre-configured cloud workspace.
Available only on desktop
This Guided Project is designed for laptops or desktop computers with a reliable Internet connection, not mobile devices.
Why people choose Coursera for their career
You might also like
Coursera Project Network
DeepLearning.AI
New to Machine Learning? Start here.
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.
Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.
You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.