In this course, the instructor will discuss various uses of regression in investment problems, and she will extend the discussion to logistic, Lasso, and Ridge regressions. At the same time, the instructor will introduce various concepts of machine learning. You can consider this course as the first step toward using machine learning methodologies in solving investment problems. The course will cover investment analysis topics, but at the same time, make you practice it using R programming. This course's focus is to train you to use various regression methodologies for investment management that you might need to do in your job every day and make you ready for more advanced topics in machine learning.
New year. Big goals. Bigger savings. Unlock a year of unlimited access to learning with Coursera Plus for $199. Save now.
Recommended experience
What you'll learn
Understanding the basic common concept of machine learning
Familiarizing with most commonly used methodology, regression
Distinguishing in-sample and out-of-sample results and leading to well-performing models in a real-life
Skills you'll gain
Details to know
Add to your LinkedIn profile
1 assignment
See how employees at top companies are mastering in-demand skills
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 2 modules in this course
Understand the characteristics of predictive models and various data in investment The instructor will give you the big picture of the algorithm-driven investment decision-making process. After you understand that, we will review the regression concept and connect it with the core concepts of machine learning methodologies.
What's included
5 videos9 readings
Use regression methodology for various investment analysis purpose and improve models by using ridge, lasso, and logistic regression. First of all, you will learn how you can gauge investment strategy using backtesting. You learned the first component of investment strategy, returns, in the first week. You will expand your study to assessing investment risks. To understand stocks' risks, you will calculate covariance and correlation matrix using historical time-series stock return data. You will extend this to market factor and three-factor models to understand the risk you are facing with your investment. Finally, you will calculate factor exposure using a 3-factor model from week 2 and separate common factor risk and idiosyncratic risk of the stock.
What's included
5 videos10 readings1 assignment
Instructor
Offered by
Recommended if you're interested in Finance
Corporate Finance Institute
EDHEC Business School
University of Michigan
Rice University
Why people choose Coursera for their career
New to Finance? Start here.
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.