Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems.
New year. Big goals. Bigger savings. Unlock a year of unlimited access to learning with Coursera Plus for $199. Save now.
Practical Predictive Analytics: Models and Methods
This course is part of Data Science at Scale Specialization
Instructor: Bill Howe
37,882 already enrolled
Included with
(320 reviews)
Skills you'll gain
- Business Analytics
- Data Analysis
- Supervised Learning
- Applied Mathematics
- Machine Learning Methods
- Data Science
- Statistical Inference
- Statistical Analysis
- Statistics
- Analytics
- Predictive Analytics
- Statistical Machine Learning
- Unsupervised Learning
- Statistical Methods
- Statistical Modeling
- Applied Machine Learning
- Predictive Modeling
- Machine Learning
- Advanced Analytics
- Machine Learning Algorithms
Details to know
Add to your LinkedIn profile
1 assignment
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 4 modules in this course
Learn the basics of statistical inference, comparing classical methods with resampling methods that allow you to use a simple program to make a rigorous statistical argument. Motivate your study with current topics at the foundations of science: publication bias and reproducibility.
What's included
28 videos
Follow a tour through the important methods, algorithms, and techniques in machine learning. You will learn how these methods build upon each other and can be combined into practical algorithms that perform well on a variety of tasks. Learn how to evaluate machine learning methods and the pitfalls to avoid.
What's included
26 videos1 reading1 assignment
You will learn how to optimize a cost function using gradient descent, including popular variants that use randomization and parallelization to improve performance. You will gain an intuition for popular methods used in practice and see how similar they are fundamentally.
What's included
11 videos
A brief tour of selected unsupervised learning methods and an opportunity to apply techniques in practice on a real world problem.
What's included
4 videos1 peer review
Instructor
Offered by
Recommended if you're interested in Data Analysis
ESSEC Business School
Rutgers the State University of New Jersey
University of Washington
Banco Interamericano de Desarrollo
Why people choose Coursera for their career
Learner reviews
320 reviews
- 5 stars
48.43%
- 4 stars
30.93%
- 3 stars
9.68%
- 2 stars
5.31%
- 1 star
5.62%
Showing 3 of 320
Reviewed on Jun 12, 2017
Very good approach to each method; the assignments are a good test for the topics.
Reviewed on Jun 7, 2017
I think the amount of course work to lectures was more appropriate than the first segment. I enjoyed the exercises and felt that they mixed the correct amount of theory and applicaiton.
Reviewed on Nov 11, 2015
The topic the professor covers are awesome. Going from statistics to machine learning is something very awesome about this course
New to Data Analysis? Start here.
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.