University of Michigan
Network Modeling and Analysis in Python

Early bird sale! Unlock 10,000+ courses from Google, IBM, and more for 50% off. Save today.

University of Michigan

Network Modeling and Analysis in Python

Daniel Romero

Instructor: Daniel Romero

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Advanced level

Recommended experience

3 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Advanced level

Recommended experience

3 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Understand the fundamental principles underlying network structures and apply NetworkX to analyze these principles in real-world networks.

  • Describe the practical uses of the community detection problem and use algorithms to detect and evaluate community structure in real networks.

  • Explain the value and applications of network generation models, learn their limits and strengths, and employ them to create synthetic networks.

  • Identify several basic diffusion models and implement them to run simulations using real and synthetic networks.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

June 2025

Assessments

14 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

Build your subject-matter expertise

This course is part of the More Applied Data Science with Python Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate

There are 4 modules in this course

In this module, you will continue learning about the foundational concepts and structural properties that characterize connectivity in networks when considering node attributes. You will explore the principle of homophily or assortative mixing, which explains the tendency of nodes to connect with others that are similar to themselves, and reciprocity, which addresses the mutual linkage between nodes. The module will also cover the concept of structural holes, which highlights the advantages of nodes positioned between unconnected network clusters, and the k-core decomposition method, used to identify cohesive subgroups within the network.

What's included

5 videos10 readings3 assignments1 programming assignment1 discussion prompt1 ungraded lab

This module covers Community Structure in networks: the organization of nodes in a network into clusters or communities, where nodes within the same community have a higher density of connections within their community than across other communities. We explore algorithms to identify communities in networks and evaluate them. Key topics include Modularity, a measure that quantifies the strength of the division of a network into modules or communities; the Girvan-Newman algorithm, a method that systematically removes edges from the network to find the best division based on edge betweenness centrality; Agglomerative Hierarchical Clustering, a technique that builds a hierarchy of clusters by progressively merging groups based on their distance or similarity; and Label Propagation, an algorithm for detecting communities based on spreading labels throughout the network and forming communities based on the dominant label. We also discuss applications to the community detection problem in real-world scenarios.

What's included

8 videos1 reading4 assignments1 programming assignment1 ungraded lab1 plugin

This module expands on network generative models, building on previously covered models such as Small-World and Preferential Attachment models. We'll explore the Erdős-Rényi model, which connects nodes randomly and serves as a baseline for understanding random graph theory. The module also covers the Stochastic Block Model, which is useful for modeling community structures by grouping nodes and connecting them based on group membership. Additionally, we explore the Configuration Model, which is used for creating random networks that maintain a given degree distribution.

What's included

5 videos1 reading3 assignments1 programming assignment1 ungraded lab

This module explores how ideas, diseases, and information spread in networks using models like SI, SIS, SIR, Independent Cascade, and Linear Threshold. Learners will simulate these models with Python, modify them, and tackle the influence maximization problem, identifying key nodes to optimize information or behavior spread.

What's included

13 videos3 readings4 assignments1 programming assignment1 ungraded lab

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.

Instructor

Daniel Romero
University of Michigan
4 Courses113,419 learners

Offered by

Explore more from Data Analysis

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."
Coursera Plus

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions