The course "Mastering Neural Networks and Model Regularization" dives deep into the fundamentals and advanced techniques of neural networks, from understanding perceptron-based models to implementing cutting-edge convolutional neural networks (CNNs). This course offers hands-on experience with real-world datasets, such as MNIST, and focuses on practical applications using the PyTorch framework. Learners will explore key regularization techniques like L1, L2, and drop-out to reduce model overfitting, as well as decision tree pruning.
Give your career the gift of Coursera Plus with $160 off, billed annually. Save today.
Mastering Neural Networks and Model Regularization
This course is part of Applied Machine Learning Specialization
Instructor: Erhan Guven
Included with
Recommended experience
What you'll learn
Build neural networks from scratch and apply them to real-world datasets like MNIST.
Apply back-propagation for optimizing neural network models and understand computational graphs.
Utilize L1, L2, drop-out regularization, and decision tree pruning to reduce model overfitting.
Implement convolutional neural networks (CNNs) and tensors using PyTorch for image and audio processing.
Skills you'll gain
Details to know
Add to your LinkedIn profile
September 2024
12 assignments
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 5 modules in this course
This course provides a comprehensive introduction to neural networks, focusing on the perceptron model, regularization techniques, and practical implementation using PyTorch. Students will build and evaluate neural networks, including convolutional architectures for image processing and audio signal modeling. Emphasis will be placed on comparing performance metrics and understanding advanced concepts like computational graphs and loss functions. By the end of the course, participants will be equipped with the skills to effectively design, implement, and optimize neural network models.
What's included
2 readings
In this module, you will learn about the fundamental concepts in neural networks, covering the perceptron model, model parameters, and the back-propagation algorithm. You'll also learn to implement a neural network from scratch and apply it to classify MNIST images, evaluating performance against sklearn's library function.
What's included
4 videos2 readings3 assignments1 ungraded lab
In this module, you'll delve into techniques to enhance machine learning model performance and generalization. You'll grasp the necessity of regularization to mitigate overfitting, compare L1 and L2 regularization methods, understand decision tree pruning, explore dropout regularization in neural networks, and observe how regularization shapes model decision boundaries.
What's included
3 videos3 readings3 assignments1 ungraded lab
In this module, you'll cover essential concepts and practical skills in deep learning using PyTorch. You'll also learn computational graphs in supervised learning, create and manipulate tensors in PyTorch, compare activation and loss functions, learn implementation steps and library functions for neural network training, and optimize models by running them on GPU for enhanced performance.
What's included
3 videos2 readings3 assignments1 ungraded lab
In this module, you'll focus on advanced applications of convolutional neural networks (CNNs) using PyTorch. You'll also learn to implement CNN filters, compare different CNN architectures, develop models for image processing tasks in PyTorch, and explore techniques for modeling audio time signals using Spectrogram features for enhanced analysis and classification.
What's included
2 videos3 readings3 assignments1 programming assignment
Instructor
Offered by
Recommended if you're interested in Machine Learning
Why people choose Coursera for their career
New to Machine Learning? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.