Il corso Machine Learning e Data Mining in R è rivolto a chiunque voglia avere una pratica panoramica delle tecniche di apprendimento automatico, dalle più interpretabili - come l’analisi di regressione, delle componenti principali e dei gruppi - a quelle più flessibili come le reti neurali artificiali, sia shallow che deep - e le più ricorrenti problematiche di analisi e modellazione di dati e problemi reali - come collinearità, overfitting, regolarizzazione e knowledge transfer.
Give your career the gift of Coursera Plus with $160 off, billed annually. Save today.
Machine Learning e Data Mining in R
This course is part of Data Science con Python e R Specialization
Instructors: Antonio Lepore
Included with
Recommended experience
What you'll learn
Importare, manipolare e visualizzare dati mediante R e i pacchetti inclusi in tidyverse come dplyr e ggplot2
Riconoscere e risolvere in R, mediante i pacchetti aggiuntivi leaps, glmnet, pls, problemi di apprendimento supervisionato e non supervisionato
Comprendere le differenze tra reti neurali artificiali di tipo shallow e deep
Skills you'll gain
Details to know
Add to your LinkedIn profile
12 assignments
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 4 modules in this course
In questa week, ti introdurrò al linguaggio R: avrai una panoramica sulle strutture dati in R, su data wrangling e visualization. Imparerai ad usare i principali pacchetti R, tra cui i famosi dplyr e ggplot2, inclusi in tidyverse. Quando necessario, ti verranno fornite nozioni teoriche di base necessarie per una maggiore comprensione dei concetti implementati in R nei successivi moduli.
What's included
10 videos6 readings4 assignments7 ungraded labs
In questa week, dopo aver introdotto la differenza tra metodi di apprendimento automatico (machine learning) supervisionato e non supervisionato, ti verranno illustrate le principali tecniche multivariate di esplorazione dei dati mediante R e i principali metodi di apprendimento automatico non supervisionato, come l'analisi dei gruppi (clustering) e l'analisi delle componenti principali (PCA).
What's included
6 videos1 reading4 assignments9 ungraded labs
In questa week, approfondirai gli elementi di apprendimento automatico (machine learning) supervisionato. Imparerai ad applicare tecniche di predizione numerica a partire dai modelli lineari di regressione semplice e multipla. Ti sensibilizzerò verso i tipici problemi derivanti dall'applicazione della regressione lineare multipla a data set reali e le più comuni soluzioni attraverso la selezioni degli attributi e la regolarizzazione. Inoltre, ti verranno forniti strumenti pratici per la valutazione della capacità descrittiva (in-sample) e predittiva (out-of-sample) di un metodo di machine learning supervisionato e per la selezione del modello interpretativo migliore.
What's included
9 videos1 reading3 assignments7 ungraded labs
In questa week ti introdurrò allo studio delle Reti Neurali Artificiali: partirai dal singolo percettrone, che è in grado di risolvere solo problemi di classificazione linearmente separabili, e, passando per il percettrone multilivello, che è in grado di risolvere problemi di classificazione e predizione numerica anche non linearmente separabili, arriverai alla "rivoluzione" del Deep Learning. Vedrai anche come è possibile utilizzare il Knowledge Transfer per addestrare le reti deep.
What's included
4 videos8 readings1 assignment
Offered by
Recommended if you're interested in Data Analysis
Duke University
Università di Napoli Federico II
University of Michigan
Why people choose Coursera for their career
New to Data Analysis? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.