Coursera
Harden AI: Secure Your ML Pipelines

Enjoy unlimited growth with a year of Coursera Plus for $199 (regularly $399). Save now.

Coursera

Harden AI: Secure Your ML Pipelines

Hanniel Jafaru
Starweaver

Instructors: Hanniel Jafaru

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

4 hours to complete
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

4 hours to complete
Flexible schedule
Learn at your own pace

What you'll learn

  • Apply infrastructure hardening in ML environments using secure setup, IAM controls, patching, and container scans to protect data.

  • Secure ML CI/CD workflows through automated dependency scanning, build validation, and code signing to prevent supply chain risks.

  • Design resilient ML pipelines by integrating rollback, drift monitoring, and adaptive recovery to maintain reliability and system trust.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

December 2025

Assessments

1 assignment

Taught in English

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

There are 3 modules in this course

This module lays the foundation for securing machine learning systems by focusing on the underlying infrastructure that supports them. Learners will explore why strong security controls at the operating system, cloud, and container levels are essential for protecting sensitive ML workloads. Real-world breaches often start with overlooked vulnerabilities in servers, misconfigured storage buckets, or unsecured APIs, and this module provides the knowledge to prevent such entry points. Through theory, demonstration, and an interactive scenario, learners will gain the skills to harden ML environments, apply IAM best practices, and perform vulnerability scans that reveal weaknesses before attackers exploit them. By the end of this module, learners will understand how infrastructure hygiene directly impacts the integrity of ML models and data.

What's included

5 videos2 readings1 peer review

This module builds on the infrastructure layer by addressing the unique risks found in machine learning build and deployment workflows. Continuous integration and continuous deployment (CI/CD) pipelines accelerate innovation, but they also introduce opportunities for adversaries to slip in malicious dependencies, poisoned data, or corrupted artifacts. Learners will study the anatomy of ML supply chain attacks and discover practical strategies to counter them, such as dependency scanning, code signing, and reproducible builds. The combination of theory, real-world case studies, and a hands-on demo will help learners see how insecure workflows can compromise entire AI systems. By the end of this module, participants will be able to design and implement CI/CD pipelines that embed security into every stage of model development and deployment.

What's included

3 videos1 reading1 peer review

This module brings together infrastructure and workflow security into a forward-looking focus on resilience. No pipeline is immune to compromise or error, but resilient pipelines are designed to detect issues quickly, recover gracefully, and maintain trustworthiness under stress. Learners will study common compromise vectors in ML systems, from adversarial inputs to model drift, and then explore resilience strategies like rollback, redundancy, and drift monitoring. The demo illustrates how even a simple rollback can protect business continuity when a model misbehaves in production. The scenario-based dialogue challenges learners to think critically about balancing speed, reliability, and safety in real-world ML operations. By the end of this module, learners will understand how to engineer resilience into ML pipelines so that failures and attacks become manageable events rather than catastrophic disruptions.

What's included

4 videos1 reading1 assignment2 peer reviews

Instructors

Hanniel Jafaru
Coursera
1 Course83 learners

Offered by

Coursera

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Frequently asked questions