TensorFlow 2 시작하기 과정에 오신 것을 환영합니다!
이 과정에서는 순차 API를 사용한 모델 구축, 훈련, 평가 및 예측, 모델 검증, 정규화, 콜백 구현, 모델 저장 및 로딩 등 Tensorflow를 사용하여 딥 러닝 모델을 개발하기 위한 완벽한 엔드-투-엔드 워크플로우를 배우게 됩니다. 배운 개념을 실용적인 실습형 코딩 자습서에서 바로 연습할 것이며 이는 대학원 조교에게 안내를 받게 될 것입니다. 또한 기술을 통합할 수 있는 일련의 자동 채점 프로그래밍 과제가 있습니다.\n\n과정이 끝나면 이미지 분류기 딥 러닝 모델을 처음부터 개발하는 Capstone 프로젝트에 많은 개념을 통합할 것입니다. Tensorflow는 오픈 소스 머신 라이브러리이며 딥 러닝에 가장 널리 사용되는 프레임워크 중 하나입니다. Tensorflow 2의 출시는 초심자에서 고급 수준에 이르기까지 모든 사용자의 사용 편의성에 중점을 둔 제품 개발의 단계적 변화를 나타냅니다. 이 과정은 Tensorflow 1.x에 대한 경험이 있는 사용자뿐만 아니라 경험이 없는 사용자 모두를 대상으로 합니다. 이 과정에서 성공하기 위해서는 파이썬 프로그래밍 언어(이 과정에서는 파이썬 3 사용), 일반적인 머신 러닝 개념(예: 과적합/과소적합, 지도 학습 작업, 검증, 정규화 및 모델 선택), 전형적인 모델 아키텍처(MLP/피드포워드 및 컨볼루션 신경망), 활성화 함수, 출력 레이어 및 최적화를 포함한 딥 러닝 분야의 실무 지식을 갖추고 있어야 합니다.