Software Developer Salary Guide (2025)
January 21, 2025
Article · 7 min read
Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now
This course is part of multiple programs.
Instructors: Roger D. Peng, PhD
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
181,237 already enrolled
Included with
(6,074 reviews)
(6,074 reviews)
Understand analytic graphics and the base plotting system in R
Use advanced graphing systems such as the Lattice system
Make graphical displays of very high dimensional data
Apply cluster analysis techniques to locate patterns in data
Add to your LinkedIn profile
2 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data.
This week covers the basics of analytic graphics and the base plotting system in R. We've also included some background material to help you install R if you haven't done so already.
15 videos6 readings1 assignment5 programming assignments1 peer review
Welcome to Week 2 of Exploratory Data Analysis. This week covers some of the more advanced graphing systems available in R: the Lattice system and the ggplot2 system. While the base graphics system provides many important tools for visualizing data, it was part of the original R system and lacks many features that may be desirable in a plotting system, particularly when visualizing high dimensional data. The Lattice and ggplot2 systems also simplify the laying out of plots making it a much less tedious process.
7 videos1 reading1 assignment5 programming assignments
Welcome to Week 3 of Exploratory Data Analysis. This week covers some of the workhorse statistical methods for exploratory analysis. These methods include clustering and dimension reduction techniques that allow you to make graphical displays of very high dimensional data (many many variables). We also cover novel ways to specify colors in R so that you can use color as an important and useful dimension when making data graphics. All of this material is covered in chapters 9-12 of my book Exploratory Data Analysis with R.
12 videos1 reading4 programming assignments
This week, we'll look at two case studies in exploratory data analysis. The first involves the use of cluster analysis techniques, and the second is a more involved analysis of some air pollution data. How one goes about doing EDA is often personal, but I'm providing these videos to give you a sense of how you might proceed with a specific type of dataset.
2 videos2 readings1 programming assignment1 peer review
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
Coursera Project Network
Course
Coursera Project Network
Course
University of Leeds
Build toward a degree
Course
Johns Hopkins University
Course
6,074 reviews
74.30%
21.13%
3.39%
0.74%
0.42%
Showing 3 of 6074
Reviewed on Jan 17, 2016
Very nice course, plotting data to explore and understand various features and their relationship is the key in any research domain, and this course teaches the skill required to achieve this.
Reviewed on Jun 5, 2020
Awesome course that expands on your R knowledge. Only nitpick is that some of the links don't work and the videos need an overhaul as there seem to be little to no updates since 2015/2016.
Reviewed on Jun 5, 2017
This was incredibly useful because it gives you a feel for the datasets and tools with which to explore them. I really wasn't aware of the base and lattice plotting systems until now.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,