University of Colorado Boulder
컴퓨터 비전 분야에서의 딥 러닝 응용 사례

New year. Big goals. Bigger savings. Unlock a year of unlimited access to learning with Coursera Plus for $199. Save now.

University of Colorado Boulder

컴퓨터 비전 분야에서의 딥 러닝 응용 사례

Ioana Fleming

Instructor: Ioana Fleming

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

22 hours to complete
3 weeks at 7 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

22 hours to complete
3 weeks at 7 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • 수강생은 컴퓨터 비전이 무엇인지 설명하고 컴퓨터 비전 과제의 예를 들 수 있습니다.

  • 수강생은 컴퓨터 비전 과제에 대한 알고리즘 솔루션의 배경이 되는 프로세스와 그 장단점을 설명할 수 있습니다.

  • 수강생은 직접 최신 머신 러닝 툴과 파이썬 라이브러리를 사용할 수 있습니다.

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

4 assignments

Taught in Korean

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 5 modules in this course

이번 단원에서는 컴퓨터 비전 분야를 알아봅니다. 컴퓨터 비전은 이미지에서 정보를 추출하는 것을 목표로 합니다. 컴퓨터 비전 과제의 주요 범주를 살펴본 뒤, 각 범주에 해당하는 응용 사례를 살펴보겠습니다. 머신 러닝 및 딥 러닝 기법의 도입이 컴퓨터 비전 분야에 어떤 영향을 주었는지 알아보겠습니다.

What's included

4 videos12 readings1 assignment1 discussion prompt

이번 단원에서는 고전적 컴퓨터 비전 툴 및 기법에 대해 알아봅니다. 합성곱 연산, 선형 필터, 그리고 이미지 특징을 감지하는 알고리즘을 알아봅니다.

What's included

5 videos10 readings1 assignment

이번 단원에서는 첫 번째로 고전 컴퓨터 비전에서의 객체 인식의 문제점을 복습합니다. 다음으로 고전 컴퓨터 비전 파이프라인을 통해 객체 인식 및 이미지 분류를 수행하는 단계를 살펴봅니다.

What's included

3 videos2 readings1 assignment

이번 단원에서는 신경망을 사용한 이미지 분류 파이프라인이 고전 컴퓨터 비전 툴과 어떻게 다른지 비교해 보겠습니다. 그 후 신경망의 기본적인 요소에 대해 복습하겠습니다. 텐서 플로우 튜토리얼을 통해 이미지 분류 예측을 위해 신경망을 구축, 훈련 및 사용하는 방법을 실습하고 마무리 하겠습니다.

What's included

4 videos5 readings1 peer review1 ungraded lab

이번 단원에서는 합성곱 신경망의 구성 요소를 알아보겠습니다. 심층 신경망을 설명하는 매개변수와 초매개변수에 대해 배우고 이들이 어떻게 딥 러닝 모델의 정확도를 개선해주는지 알아보겠습니다. 텐서 플로우 튜토리얼을 통해 이미지를 분류하는 딥 신경망 구축, 훈련 및 사용을 실습하고 마무리 하겠습니다.

What's included

6 videos10 readings1 assignment1 peer review1 ungraded lab

Instructor

Ioana Fleming
University of Colorado Boulder
2 Courses8,002 learners

Offered by

Recommended if you're interested in Machine Learning

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

New to Machine Learning? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions