Python or R for Data Analysis: Which Should You Learn?
February 4, 2025
Article · 5 min read
Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now
This course is part of Data Analysis with Python Specialization
Instructor: Di Wu
Included with
Recommended experience
Intermediate level
Students should have taken the "Data Wrangling with Python" specialization and the other four courses in this specialization.
Recommended experience
Intermediate level
Students should have taken the "Data Wrangling with Python" specialization and the other four courses in this specialization.
Define the scope and direction of a data analysis project, identifying appropriate techniques and methodologies for achieving project objectives.
Apply various classification and regression algorithms and implement cross-validation and ensemble techniques to enhance the performance of models.
Apply various clustering, dimension reduction association rule mining, and outlier detection algorithms for unsupervised learning models.
Add to your LinkedIn profile
1 assignment
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
The "Data Analysis Project" course empowers students to apply their knowledge and skills gained in this specialization to conduct a real-life data analysis project of their interest. Participants will explore various directions in data analysis, including supervised and unsupervised learning, regression, clustering, dimension reduction, association rules, and outlier detection. Throughout the modules, students will learn essential data analysis techniques and methodologies and embark on a journey from raw data to knowledge and intelligence. By completing the course, students will be proficient in data analysis, capable of applying their expertise in diverse projects and making data-driven decisions.
By the end of this course, students will be able to: 1. Understand the fundamental concepts and methodologies of data analysis in diverse directions, including supervised and unsupervised learning, regression, clustering, dimension reduction, association rules, and outlier detection. 2. Define the scope and direction of a data analysis project, identifying appropriate techniques and methodologies for achieving project objectives. 3. Apply various classification algorithms, such as Nearest Neighbors, Decision Trees, SVM, Naive Bayes, and Logistic Regression, for predictive modeling tasks. 4. Implement cross-validation and ensemble techniques to enhance the performance and generalizability of classification models. 5. Apply regression algorithms, including Simple Linear, Polynomial Linear, and Linear with regularization, to model and predict numerical outcomes. 6. Perform multivariate regression and apply cross-validation and ensemble methods in regression analysis. 7. Explore clustering techniques, including partitioning, hierarchical, density-based, and grid-based methods, to discover underlying patterns and structures in data. 8. Apply Principal Component Analysis (PCA) for dimension reduction to simplify high-dimensional data and aid in data visualization. 9. Utilize Apriori and FPGrowth algorithms to mine association rules and discover interesting item associations within transactional data. 10. Apply outlier detection methods, including Zscore, IQR, OneClassSVM, Isolation Forest, DBSCAN, and LOF, to identify anomalous data points and contextual outliers. Throughout the course, students will actively engage in tutorials, practical exercises, and the data analysis project case study, gaining hands-on experience in diverse data analysis techniques. By achieving the learning objectives, participants will be well-equipped to excel in data analysis projects and make data-driven decisions in real-world scenarios.
In this first week, you will gain an overview of data analysis, understanding supervised and unsupervised learning directions. You will learn how to define the scope and direction of their data analysis project effectively.
1 reading
This week focuses on classification techniques, where you will explore Nearest Neighbors, Decision Trees, SVM, Naive Bayes, Logistic Regression, cross-validation, ensemble methods, and evaluation metrics.
1 reading
This week you will delve into regression techniques, including Simple Linear, Polynomial Linear, Linear with regularization, multivariate regression, cross-validation, ensemble methods, and evaluation metrics.
1 reading
This week introduces clustering techniques, including partitioning, hierarchical, density-based, and grid-based methods, for unsupervised pattern discovery.
1 reading
This week will focus on dimension reduction techniques, with a particular emphasis on Principal Component Analysis (PCA).
1 reading
This week focuses on a comprehensive case study where you will apply association rule mining and outlier detection techniques to solve a real-world problem.
1 reading
This final week focuses on outlier detection methods, including Zscore, IQR, OneClassSVM, Isolation Forest, DBSCAN, LOF, and contextual outliers.
2 readings1 assignment1 discussion prompt
CU Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
University of Colorado Boulder
Specialization
Course
Maven Analytics
Course
University of Colorado Boulder
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,