Agile Methodology: Principles, Uses and Framework
December 19, 2024
Article
New year. Big goals. Bigger savings. Unlock a year of unlimited access to learning with Coursera Plus for $199. Save now.
This course is part of Practical Data Science for Data Analysts Specialization
Instructor: CFI (Corporate Finance Institute)
Included with
Add to your LinkedIn profile
November 2024
1 assignment
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Classification problems are one of the most common scenarios we face in data science. This course will help you understand and apply common algorithms to make predictions and drive decision-making in business. Whether you’re an aspiring data scientist, studying analytics, or have a focus on business intelligence, this course will give you a comprehensive overview of classification problems, solutions, and interpretations.
From Logistic Regression to KNN and SVM models, you’ll learn how to implement techniques in Excel and Python and how to create loops to run models in parallel. Since model evaluation is so important, we’ll dedicate a whole chapter to interpreting model outputs with evaluation metrics and the confusion matrix. With this, you’ll learn about false negatives, and false positives, and consider the impacts these may have on specific business scenarios. Finally, we’ll give you a brief insight into more advanced classification techniques such as feature importance, SHAP values, and PDP plots. Upon completing this course, you will be able to: • Distinguish between classic classification techniques including their implicit assumptions and practical use-cases • Perform simple logistic regression calculations in Excel & RegressIt • Create basic classification models in Python using statsmodels and sklearn modules • Evaluate and interpret the performance of classification model outputs and parameters Whether you’re an aspiring data scientist, studying analytics, or have a focus on business intelligence, this classification course will serve as your comprehensive introduction to this fascinating subject. You’ll learn all the key terminology to allow you to talk data science with your teams, benign implementing analysis, and understand how data science can help your business.
Classification problems are one of the most common scenarios we face in data science. This course will help us understand and apply common algorithms to make predictions and drive decision-making in business. From Logistic Regression to KNN and SVM models, we'll learn how to implement techniques in Excel and Python and how to create loops to run models in parallel. Since model evaluation is so important, we’ll dedicate a whole chapter to interpreting model outputs with evaluation metrics and the confusion matrix. With this, we’ll learn about false negatives, and false positives, and consider the impacts these may have on specific business scenarios. Finally, we’ll have a brief insight into more advanced classification techniques such as feature importance, SHAP values, and PDP plots.
1 video1 reading
8 videos
9 videos1 reading
12 videos
19 videos
1 assignment
CFI is the leading global provider of training and productivity tools for finance and banking professionals. CFI delivers the skills, certifications, CPE credits, and resources to help anyone—from beginner to seasoned pro—drive their career in finance & banking.
Course
Edureka
Course
University of Colorado Boulder
Course
Stanford University
Specialization
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.