This course is a capstone assignment requiring you to apply the knowledge and skill you have learnt throughout the specialization. In this course you will choose one of the areas and complete the assignment to pass.
Capstone Assignment - CDSS 5
This course is part of Informed Clinical Decision Making using Deep Learning Specialization
Instructor: Fani Deligianni
Included with
Details to know
Add to your LinkedIn profile
3 assignments
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 3 modules in this course
This is an advanced exercise/lesson that combines knowledge from the three earlier modules: 1) 'Data mining of Clinical Databases' to query the MIMIC database, 2) 'Deep learning in Electronic Health Records' to pre-process EHR and build deep learning models and 3) 'Explainable deep learning models for healthcare' to explain the models decision. In particular, permutation feature importance is implemented and applied on MIMIC-III extracted datasets. The technique is applied both on logistic regression and on an LSTM model. The explanations derived are global explanations of the model.
What's included
3 readings1 assignment
This is an advanced exercise/lesson that combines knowledge from the three earlier modules: 1) 'Data mining of Clinical Databases' to query the MIMIC database, 2) 'Deep learning in Electronic Health Records' to pre-process EHR and build deep learning models and 3) 'Explainable deep learning models for healthcare' to explain the models decision. In particular, LIME is applied on MIMIC-III extracted datasets. The technique is applied on both logistic regression and an LSTM model . The explanations derived are local explanations of the model.
What's included
2 readings1 assignment
This is an advanced exercise/lesson that combines knowledge from the three earlier modules: 1) 'Data mining of Clinical Databases' to query the MIMIC database, 2) 'Deep learning in Electronic Health Records' to pre-process EHR and build deep learning models and 3) 'Explainable deep learning models for healthcare' to explain the models decision. In particular, GradCam is implemented and applied on an LSTM model that predicts mortality based on MIMIC-III extracted datasets. The explanations derived are local explanations of the model.
What's included
1 reading1 assignment
Instructor
Offered by
Recommended if you're interested in Machine Learning
École Polytechnique
University of Michigan
Why people choose Coursera for their career
New to Machine Learning? Start here.
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.