Types of Phishing and How to Protect Yourself
March 18, 2024
Article
(23 reviews)
Recommended experience
Intermediate level
Basic knowledge of recommender systems. Basic notions of linear algebra.
(23 reviews)
Recommended experience
Intermediate level
Basic knowledge of recommender systems. Basic notions of linear algebra.
You will be able to use some machine learning techniques in order to build more sophisticated recommender systems.
You will learn how to combine different basic approaches into a hybrid recommender system, in order to improve the quality of recommendations.
You will know how to integrate different kinds of side information (about content or context) in a recommender system.
You'll learn how to use factorization machines and represent the input data, mixing together different kinds of filtering techniques.
Add to your LinkedIn profile
4 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
In this course, you will see how to use advanced machine-learning techniques to build more sophisticated recommender systems. Machine Learning is able to provide recommendations and make better predictions, by taking advantage of historical opinions from users and building up the model automatically, without the need for you to think about all the details of the model.
At the end of the Advanced Recommender Systems, you will know how to manage hybrid information and how to combine different filtering techniques, taking the best from each approach. More, you will know how to use factorisation machines and represent the input data accordingly and be able to design more sophisticated recommender systems, which can solve the cross-domain recommendation problem. The course leverages two important EIT Digital Overarching Learning Outcomes (OLOs), related to your creativity and innovation skills. In trying to design a new recommender system you need to think beyond boundaries and try to figure out how you can improve the quality of the outcomes. You should also be able to use knowledge, ideas and technology to create new or significantly improved recommendation tools to support choice-making processes and solve real-life problems in complex and innovative scenarios.
In this first module, we will see how to apply machine learning to collaborative filtering techniques. We will learn how to write an item-based collaborative algorithm which is able to automatically learn the best similarities between items, in order to provide improved recommendations that better match the user opinions predicted by the model with the true user opinions. We will also understand how to train collaborative filtering algorithms that minimize this gap. We will finally define a new error metric based on ranking comparisons, useful to design learning-to-rank algorithms.
7 videos2 readings1 assignment2 peer reviews
In this second module, we will study a new family of collaborative filtering techniques based on dimensionality reduction and matrix factorization approaches, all inspired by SVD (Singular Value Decomposition). We will see the difference between memory-based and model-based recommender systems, discussing their limitations and advantages. In particular, we will learn how to turn basic matrix factorization algorithms from memory-based into model-based approaches. We will also analyse a new important parameter, the number of latent features. We will learn how to choose the correct number of latent features in order to provide personalised recommendations and to reduce the risk of overfitting historical data.
8 videos1 assignment1 peer review1 discussion prompt
In this third module, we will see how to combine two or more basic algorithms, such as collaborative filtering and content-based techniques, into a hybrid recommender system, in order improve the quality recommendations. We will study different hybridization approaches, from the simplest heuristic-based, to the more sophisticated machine learning-based. Thanks to hybrid techniques, we will be able to enrich the input of a collaborative recommender system with either content or contextual information.
10 videos1 assignment1 peer review2 discussion prompts
In this fourth and last module, we will introduce a new advanced technique of collaborative filtering with side information, which is called Factorization Machine (FM), and we’ll see how the input data should be represented when using this technique. With only one mathematical model, based on how you build the input table, we will be able to create a simple matrix factorization algorithm or a sophisticated collaborative filtering algorithm with side information (context, attributes on items or attributes on users). We will also discuss benefits and critical issues of algorithms based on FMs. At the end of the module you will know how to use FMs to mix together different kinds of filtering techniques and how to balance different kinds of input information, playing with coefficients and weights, in order to make better and more sophisticated predictions.
7 videos1 assignment1 peer review1 discussion prompt
The RecSys Challenge is the best way to train your competences: it's a practical exercise which provides a "hands-on" opportunity to put to good use and improve what you've been learning during this course (learning by doing). The application domain is an online store, the dataset we provide contains 4 months of transactions collected from an online supermarket. The main goal of the competition is to discover which item a user will interact with. The RecSys Challenge is optional and it is not required to pass the course. If you complete it, you will receive an Honors designation on your Course certificate.
1 reading1 programming assignment
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
EIT Digital is a European education and innovation organisation with a mission to foster digital technology innovation and entrepreneurial talent for economic growth and quality of life. By linking education, research, and business, EIT Digital empowers digital top talent for the future. EIT Digital provides online and face-to-face Innovation and Entrepreneurship education to raise quality, increase diversity and availability of the top-level content provided by 20 leading technical universities around Europe. The universities deliver a unique blend of the best of technical excellence and entrepreneurial skills and mindset to digital engineers and entrepreneurs at all stages of their careers. The academic partners support Coursera’s bold vision to enable anyone, anywhere, to transform their lives by accessing the world’s best learning experience. This means that EIT Digital gradually shares parts of its entrepreneurial and academic education programmes to demonstrate its excellence and make it accessible to a much wider audience. EIT Digital’s online education portfolio can be used as part of blended education settings, in both Master's and Doctorate programmes, and for professionals as a way to update their knowledge.
Politecnico di Milano is a scientific-technological University, which trains engineers, architects and industrial designers. From 2014 Politecnico di Milano started the release of several MOOCs, developed by the service for digital learning METID (Methods and Innovative Technologies for Learning), giving everybody the chance to enhance personal skills.
EIT Digital
Course
University of Minnesota
Specialization
Sungkyunkwan University
Course
University of Minnesota
Course
23 reviews
56.52%
13.04%
0%
13.04%
17.39%
Showing 3 of 23
Reviewed on Jun 24, 2021
Great course to overview advanced techniques to build recommender system.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,